海军航空工程学院学报
主办单位:海军航空工程学院
国际刊号:1673-1522
国内刊号:37-1311/V
学术数据库优秀期刊 《中文科技期刊数据库》来源期刊
       首 页   |   期刊介绍   |   新闻公告   |   征稿要求   |   期刊订阅   |   留言板   |   联系我们   
  本站业务
  在线期刊
      最新录用
      期刊简明目录
      本刊论文精选
      过刊浏览
      论文下载排行
      论文点击排行
      
 

访问统计

访问总数:15946 人次
 
    本刊论文
超级电容器在航空地面直流电源上应用的可行性分析

  论文导读:超级电容器是近十年来出现的最为与众不同的电容器。依据这一思维,如能将这一最优组合方式用在航空地面电源起动系统中,那么航空地面电源性能将提升到一个新的水平。

  关键词:超级电容器,航空地面电源

  1 引言

  1.1简介

  超级电容器是近十年来出现的最为与众不同的电容器。论文大全。超级电容器的问世实现了电容量由微法级向法拉级的飞跃,彻底改变了人们对电容器的传统印象。

  文本框: 图1 超级电容器的结构超级电容器是一种电容量可达数千法拉的电容量极大的电容器。根据电容器的原理,电容量取决于电极间距离、介质与电极表面积。为了得到如此大的电容量,超级电容器尽可能地缩小电极间距离、增加电极表面积,为此采用了双电层原理和活性炭多孔化电极。双电层介质在电容器两电极施加电压时,在靠近电极的电介质界面上产生与电极所携带电荷相反的电荷并被束缚在介质界面上,形成事实上的电容器的两个电极,两电极的距离非常小,仅几纳米,同时活性炭多孔化电极可以获得极大的电极表面积,可以达到200m2/g,因而这种结构的超级电容器具有极大的电容量并可以存储很大的静电能量。图1为超级电容器的结构示意图。就储能而言,超级电容器的这一特性是介于传统的电容器与电池之间。

  当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应,因此性能是稳定的,与利用化学反应的蓄电池是不同的。

  1.2超级电容器的优缺点

  1.2.1优点

  (1)更长的循环寿命,能够循环百万次以上;

  (2)低阻抗,和电池并联时能够增强负载电流;

  (3)迅速充电,超级电容器能够在几秒钟内充满;

  (4)简单的充电模式,无需检测是否充满,过充无危险;

  (5)具有法拉级的超大电容量;

  (6)脉冲功率比蓄电池的高近十倍;

  (7)能在-40℃~60℃的环境温度中正常使用;

  (8)无污染,真正免维护。超级电容器用的材料是安全和无毒的,而铅酸蓄电池、镍镉蓄电池用的材料具有毒性;

  (9)超级电容器可以任意并联使用来增加电容量,采取均压措施后,还可以串联使用。

  1.2.2缺点

  (1)线性的放电曲线使其无法完全放电;

  (2)低能量密度,一般只有一个化学电源能量密度的五分之一到十分之一;

  (3)低电压,需要若干个连接后才能得到高电压,3个电容以上串联时需要平衡电压;

  (4)高自放电,自放电率高过化学电源。

  由此可知,超级电容器具有很好的性能,但是超级电容器目前还不能完全代替电池,因为超级电容器的应用特长是功率的输入/输出,而不是高能量。一种最佳的优化组合是将超级电容器与电池组合使用,因为电源车起动时电流很大,只用电池会大大降低电池寿命,如将超级电容器与电池组合使用,不仅可以减少起动电池的使用数量,而且还优化了输出能量,增加了电池使用寿命。依据这一思维,如能将这一最优组合方式用在航空地面电源起动系统中,那么航空地面电源性能将提升到一个新的水平。

  2 航空地面直流电源的输出特性

  2.1 422系列电源车的简介

  422系列电源车不但在航空兵场站应用越来越多,而且已经被民航机场广泛采用。它较以往的电源车在技术性能和生产工艺上都有了较大的提高,体积小,重量轻,机动性能好。

  422系列电源车采用了一组航空蓄电池GB,由两块182型电瓶经减格连接而成,端电压为26 V左右。它既是柴油机起动系统的工作电源,又是电源车的直流辅助电源。当接通蓄电池“输出”开关S4时,蓄电池输出控制接触器 KM1工作,将蓄电池GB与电源车供电电路接通。当输出28.5/57V电源和“0—70 V”电源时必须合上S4。

  负载特性:突然加载,由0突加到800A×2,瞬时电压不低于25.5V,3s内稳定到27.5~28.5V;突然卸载,由800A ×2突减到0,瞬时电压不高于32 V,3s内稳定到28.5~29.5 V;超载,1200A×2,电压不低于25V。

  2.2 422系列电源车的缺陷以及改进设想

  422系列电源车起动采用起动电动机起动方式。在起动过程中特别是在起动瞬间,由于起动电动机转速为零,不产生感生电势,故起动电流为:

  其中:为蓄电池空载端电压,为起动电动机的电枢电阻、为蓄电池内阻、为线路电阻。由于、、均很小,起动电流非常大。

  例如用12V、45Ah的蓄电池起动安装1.9L柴油机的电源车,经过仿真可知,蓄电池的电压在起动瞬间由12.6V降到约3.6V!起动过程的蓄电池电压波形如图2;起动瞬时的电流达550A,约为蓄电池的12倍的放电率!起动过程的蓄电池电流波形如图3(图3中纵坐标为电流传感器两端的电压值,电流传感器的电流/电压变换比率为100A/V,即5.5V代表550A)。尽管车用蓄电池是起动专用蓄电池,可以高倍率放电,但在图2中可以看出,10倍以上高倍率放电时的蓄电池性能变得很差,而且,如此高倍率放电对蓄电池的损伤也是非常明显的。

  在起动飞机的过程中,起动电流的突变更剧烈。在某型飞机的四级起动过程中,起动电流的变化会对蓄电池带来更严重的损坏。论文大全。起动过程的电压剧烈变化也是极强的电磁干扰,可以造成电气设备的“掉电”,迫使电气设备在发电机起动过程结束后重新上电,计算机在这个过程中非常容易死机。因此,无论从改善电源车电气设备的电磁环境还是从改善电源车的起动性能和蓄电池的性能、延长使用寿命来考虑,改善电源车电源在起动过程的性能是必要的。

  问题的解决可以采取加大蓄电池容量的方案,但需要增加很多,使体积增大,这并不是好的解决方案。将超级电容器与蓄电池并联可以很好地解决这个问题,可以用于提供飞机发动机瞬间所需的冲击大电流,提高起动性能,缩短起动时间,降低起动瞬间大电流对蓄电池造成的损害,延长蓄电池的使用寿命。而且超级电容器在以内燃机为动力的422系列直流电源车上的采用可以解决电源车起动飞机发动机瞬间功率不足的技术难题。同时,在起动瞬间超级电容器对直流电源车发电系统尤其是内燃机具有很大的保护作用。

  3 超级电容器在航空地面直流电源车中的应用

  3.1电性能的改善

  按此在新窗口浏览图片采用超级电容器与蓄电池并联时起动过程的电压波形如图4, 与图2相比采用超级电容器与蓄电池并联时起动瞬间电压跌落由仅采用蓄电池时的3.2V提升到7.2V;起动过程的平稳电压由7V提高到9.4V。

  图4 采用超级电容器与蓄电池并联时起动过程的电压波形3.2 起动性能的改善

  超级电容器与蓄电池并联应用可以提高电源车的起动性能,将超级电容器(450F/16.2V)与12V、45Ah的蓄电池并联起动安装1.9L柴油机的电源车,在10℃时平稳起动,尽管在这种情况下,当不连接超级电容器,蓄电池也可以起动,但采用超级电容器与蓄电池并联时起动电动机的速度和性能都非常的好。由于电源输出功率的提高,起动速度由仅用蓄电池时的起动速度300rpm,增加到450rpm;尤其在提高电源车冷天的起动性能(更高的起动转矩)上,超级电容器是非常有意义的,在-20℃时,由于蓄电池的性能大大下降,很可能不能正常起动或需多次起动才能成功,而超级电容器与蓄电池并联时则仅需一次点火。其优点是非常明显的。

  3.3 对蓄电池应用状态的改善

  超级电容器与蓄电池并联时,由于超级电容器的等效串联电阻(ESR)远低于蓄电池的内阻,因此,在起动瞬间起动电流大部分由超级电容器提供,有效地降低了蓄电池极板的极化,阻止了蓄电池内阻的上升使起动过程的平稳电压得到提高。最主要的是蓄电池极板极化的减轻不仅有利于延长蓄电池的使用寿命,而且也可以消除频繁起动对蓄电池寿命的影响。

  4 结论

  以上是对超级电容器在航空地面电源上应用的可行性分析。超级电容器已经在国民经济各个部门有了广泛的应用,如配合蓄电池应用于各种内燃发动机的电起动系统;用作高压开关设备的直流操作电源,用于铁路驼峰场道岔机后备电源;用于电传动装甲车辆的制动能量回收和起步加速电源以及军工车辆发动机的电起动装置;用于重要用户的不间断供电系统;用于风力及太阳能发电系统。论文大全。这些事实充分证明了超级电容器的良好性能。可以预见,随着超级电容器在航空地面电源上应用的不断深入,有可能缩短我军电源保障装备与航空主战装备的巨大差距,更好地保障航空主战装备。

  参考文献

  1 42Volt Super-Capacitor Provides Cranking Amps to Integrated Starter Alternator. FrankLev. Tavrima Canada Ltd, April 12,2002

  2GJB572-88,飞机地面电源供电特性及一般要求

  3GJB1910-94, 飞机地面电源车通用规范

  4 陈艾等。超大容量电化学离子电容器。电子科学技术评论,1999,(4):34-36

特别说明:本站仅协助已授权的杂志社进行在线杂志订阅,非《海军航空工程学院学报》杂志官网,直投的朋友请联系杂志社。
版权所有 © 2009-2024《海军航空工程学院学报》编辑部  (权威发表网)   苏ICP备20026650号-8